Data-Driven MPC Why bother with a model?

Alexandre F.B.

2A SG8 MPC – CentraleSupélec

2nd May 2024

Latin Notations

NOTATIONS

WE WILL TRY TO KEEP THEM FROM NOW TO THE END ...

- N_p : prediction horizon
- k : current time
- Given a vector $z \in \mathbb{R}^{n_z}$, we will adopt these 2 notations for prediction: Z(K|k) and Z(K+1|k) to denote:

$$Z(K|k) = \begin{pmatrix} z(k|k) \\ z(k+1|k) \\ \vdots \\ z(k+N_p-1|k) \end{pmatrix} \in \mathbb{R}^{N_p n_x} \qquad \qquad Z(K+1|k) = \begin{pmatrix} z(k+1|k) \\ z(k+2|k) \\ \vdots \\ z(k+N_p|k) \end{pmatrix} \in \mathbb{R}^{N_p n_x}$$

They can be interpreted as $\$ what I expect over the prediction horizon, based on what I know at time k ».

• When there is no confusion: Z(K), Z and Z(K+1), Z^+

21

2A-SG8-MPC

RB

Figure 1: Recall from Romain's slides

Preliminaries Notations

Notations and algebra for today

- L: trajectory length, t: current time, N_p : prediction horizon
- Given a vector $z \in \mathbb{R}^{n_z}$, we will adopt the following notations:
 - z_k the value of z at time k

•
$$z_{[k,k+\ell]} = \begin{pmatrix} z_k \\ z_{k+1} \\ \vdots \\ z_{k+\ell} \end{pmatrix} \in \mathbb{R}^{(\ell+1)n_z}$$
 the "stacked window"

3/20Alexandre F.B. Data-Driven MPC Preliminaries Notations

Notations and algebra for today

- L: trajectory length, t: current time, N_p : prediction horizon
- Given a vector $z \in \mathbb{R}^{n_z}$, we will adopt the following notations:
 - ullet z_k the value of z at time k

•
$$z_{[k,k+\ell]} = \begin{pmatrix} z_k \\ z_{k+1} \\ \vdots \\ z_{k+\ell} \end{pmatrix} \in \mathbb{R}^{(\ell+1)n_z}$$
 the "stacked window"

- $z_k(t)$ predicted/calculated value of z_{t+k} , from information available at time t
- $\hookrightarrow z_{[0,\ell]}(t)$ "what I expect on the interval $[t+0,t+\ell]$, based on what I know at time t"

3/20Alexandre F.B. Data-Driven MPC Preliminaries Notations

Notations and algebra for today

- L: trajectory length, t: current time, N_p : prediction horizon
- Given a vector $z \in \mathbb{R}^{n_z}$, we will adopt the following notations:
 - z_k the value of z at time k

•
$$z_{[k,k+\ell]}=\begin{pmatrix} z_k \\ z_{k+1} \\ \vdots \\ z_{k+\ell} \end{pmatrix}$$
 $\in \mathbb{R}^{(\ell+1)n_z}$ the "stacked window"

- ullet $z_k(t)$ predicted/calculated value of z_{t+k} , from information available at time t
- $\hookrightarrow z_{[0,\ell]}(t)$ "what I expect on the interval $[t+0,t+\ell]$, based on what I know at time t"
- Given a matrix M, we have its Moore-Penrose inverse M^{\dagger}
 - If Mx = b has solution(s) for x, then $M^{\dagger}b$ is a solution
- Given a matrix M > 0 and a vector z: $\|z\|_M^2 := z^\top M z$

3/20 Alexandre F.B. Data-Driven MPC

Model-Based State Prediction

وي

PREDICTION MODEL THE LINEAR CASE

· Let us consider the linear discrete-time system

$$x(k+1) = Ax(k) + Bu(k), \qquad x \in \mathbb{R}^{n_x}, u \in \mathbb{R}^{n_u}$$

- Let us suppose that we have a measure of the current state x(k)
- Show that X(K + 1|k) can be expressed as:

$$X(K+1|k) = Fx(k|k) + HU(K|k)$$

2A-SG8-MPC 2 - RB 2

28

Figure 2: Recall from Romain's slides

Preliminaries Prediction

Brick 1: Model-Based Output Prediction

Linear discrete-time system:

$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k + Du_k \end{cases}; \quad x \in \mathbb{R}^{n_x}, u \in \mathbb{R}^{n_u}, y \in \mathbb{R}^{n_y}$$

• Suppose x_k (and u) is known:

$$y_{[k,k+L-1]} = \mathcal{O}_L \quad x_k + \mathcal{H}_L \quad u_{[k,k+L-1]}$$

$$\begin{bmatrix} y_k \\ y_{k+1} \\ \vdots \\ y_{k+L-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{L-1} \end{bmatrix} \quad x_k + \begin{bmatrix} D & 0 & \dots & 0 \\ CB & D & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ CA^{L-2}B & CA^{L-3}B & \dots & D \end{bmatrix} \quad \begin{bmatrix} u_k \\ u_{k+1} \\ \vdots \\ u_{k+L-1} \end{bmatrix}$$

5 / 20 Alexandre F.B. Data-Driven MPC

eliminaries Prediction

About Linearity

- We know 2 "trajectories":
 - $\begin{array}{l} \bullet \ \, x_0^1, u_{[0,L-1]}^1, y_{[0,L-1]}^1 \\ \bullet \ \, x_0^2, u_{[0,L-1]}^2, y_{[0,L-1]}^2 \end{array}$
- \bullet We want to compute the output sequence $y^3_{[0,L-1]}$, corresponding to
 - state $x_0^3 = x_0^1 + x_0^2$
 - input sequence $u_{[0,L-1]}^3 = u_{[0,L-1]}^1 + u_{[0,L-1]}^2$

but we don't know \mathcal{O}_L nor \mathcal{H}_L ...

Preliminaries Prediction

About Linearity

- We know 2 "trajectories":
 - $\begin{array}{l} \bullet \ \, x_0^1, u_{[0,L-1]}^1, y_{[0,L-1]}^1 \\ \bullet \ \, x_0^2, u_{[0,L-1]}^2, y_{[0,L-1]}^2 \end{array}$
- We want to compute the output sequence $y_{[0,L-1]}^3$, corresponding to
 - state $x_0^3 = x_0^1 + x_0^2$
 - input sequence $u_{[0,L-1]}^3 = u_{[0,L-1]}^1 + u_{[0,L-1]}^2$

but we don't know \mathcal{O}_L nor \mathcal{H}_L ...

Thanks to linearity, we have:

$$\begin{aligned} y_{[0,L-1]}^3 &= \mathfrak{O}_L x_0^3 + \mathfrak{H}_L u_{[0,L-1]}^3 \\ &= \mathfrak{O}_L (x_0^1 + x_0^2) + \mathfrak{H}_L (u_{[0,L-1]}^1 + u_{[0,L-1]}^2) \\ &= (\mathfrak{O}_L x_0^1 + \mathfrak{H}_L u_{[0,L-1]}^1) + (\mathfrak{O}_L x_0^2 + \mathfrak{H}_L u_{[0,L-1]}^2) \\ &= y_{[0,L-1]}^1 + y_{[0,L-1]}^2 \end{aligned}$$

6 / 20 Alexandre F.B. Data-Driven MPC

Brick 2: An alternative to the State Observer

• Suppose now that S is observable, which by definition means:

$$\forall n \ge n_x, \operatorname{rank}(\mathcal{O}_n) = \operatorname{rank}\left(\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}\right) = n_x$$

 \hookrightarrow $\mathcal{O}_n x_0 = y_{[0,n-1]} - \mathcal{H}_n u_{[0,n-1]}$ is a system of linear equations, with a unique solution 1 x_0

Alexandre F.B.

¹Assuming $y_{\lceil 0,n-1 \rceil}$ is a possible output of the system

Brick 2: An alternative to the State Observer

• Suppose now that S is observable, which by definition means:

$$\forall n \ge n_x, \operatorname{rank}(\mathcal{O}_n) = \operatorname{rank}\left(\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}\right) = n_x$$

- $\hookrightarrow \mathcal{O}_n x_0 = y_{[0,n-1]} \mathcal{H}_n u_{[0,n-1]}$ is a system of linear equations, with a unique solution 1 $x_0 = \mathcal{O}_n^{\dagger} \left(y_{[0,n-1]} \mathcal{H}_n u_{[0,n-1]} \right)$
- → This is a "static" alternative to dynamic state observers: it is called MHE (Moving Horizon Estimator).
- → It is linear too!

Alexandre F.B.

¹Assuming $y_{[0,n-1]}$ is a possible output of the system

Model-Based Input-Output Representation

- Up until now, we have (with $L > n \geqslant n_x$):
 - Output prediction: $y_{[0,L-1]} = \mathcal{O}_L x_0 + \mathcal{H}_L u_{[0,L-1]}$
 - State estimation: $x_0 = \mathcal{O}_n^\dagger \left(y_{[0,n-1]} \mathcal{H}_n u_{[0,n-1]} \right)$

Model-Based Input-Output Representation

- Up until now, we have (with $L > n \geqslant n_x$):
 - Output prediction: $y_{[0,L-1]} = \mathcal{O}_L x_0 + \mathcal{H}_L u_{[0,L-1]}$
 - State estimation: $x_0 = \mathcal{O}_n^\dagger \left(y_{[0,n-1]} \mathcal{H}_n u_{[0,n-1]} \right)$
- Let's plug all this together:

$$y_{[0,L-1]} = \mathcal{O}_L \mathcal{O}_n^{\dagger} \left(y_{[0,n-1]} - \mathcal{H}_n u_{[0,n-1]} \right) + \mathcal{H}_L u_{[0,L-1]}$$

• For convenience we can write (same n; $N_p = L - n \ge 1$):

$$y_{[-n,N_p-1]}(t) = \mathcal{O}_{N_p+n} \mathcal{O}_n^{\dagger} \left(y_{[-n,-1]}(t) - \mathcal{H}_n u_{[-n,-1]}(t) \right) + \mathcal{H}_L u_{[-n,N_p-1]}(t)$$

Model-Based Input-Output Representation

- Up until now, we have (with $L > n \ge n_x$):
 - Output prediction: $y_{[0,L-1]} = \mathcal{O}_L x_0 + \mathcal{H}_L u_{[0,L-1]}$
 - State estimation: $x_0 = \mathcal{O}_n^{\dagger} \left(y_{[0,n-1]} \mathcal{H}_n u_{[0,n-1]} \right)$
- Let's plug all this together:

$$y_{[0,L-1]} = \mathcal{O}_L \mathcal{O}_n^{\dagger} \left(y_{[0,n-1]} - \mathcal{H}_n u_{[0,n-1]} \right) + \mathcal{H}_L u_{[0,L-1]}$$

• For convenience we can write (same n; $N_p = L - n \ge 1$):

$$y_{[-n,N_p-1]}(t) = \mathcal{O}_{N_p+n} \mathcal{O}_n^{\dagger} \left(y_{[-n,-1]}(t) - \mathcal{H}_n u_{[-n,-1]}(t) \right) + \mathcal{H}_L u_{[-n,N_p-1]}(t)$$

• For convenience (again) we rewrite:

$$y_{[0,N_p-1]}(t) = \mathcal{A}_L^u u_{[-n,-1]}(t) + \mathcal{A}_L^y y_{[-n,-1]}(t) + \mathcal{B}_L u_{[0,N_p-1]}(t)$$
$$= \mathcal{A}_L \begin{bmatrix} u_{[-n,-1]}(t) \\ y_{[-n,-1]}(t) \end{bmatrix} + \mathcal{B}_L u_{[0,N_p-1]}(t)$$

Back onto Linearity

From before:

$$y_{[0,N_p-1]}(t) = \mathcal{A}_L \begin{bmatrix} u_{[-n,-1]}(t) \\ y_{[-n,-1]}(t) \end{bmatrix} + \mathcal{B}_L u_{[0,N_p-1]}(t)$$

• Given initial conditions $\begin{bmatrix} u_{[-n,-1]}(t) \\ y_{[-n,-1]}(t) \end{bmatrix}$ and "future" inputs $u_{[0,N_p-1]}(t)$, we want to compute future output $y_{[0,N_p-1]}(t)$.

Back onto Linearity

From before:

$$y_{[0,N_p-1]}(t) = \mathcal{A}_L \begin{bmatrix} u_{[-n,-1]}(t) \\ y_{[-n,-1]}(t) \end{bmatrix} + \mathcal{B}_L u_{[0,N_p-1]}(t)$$

- Given initial conditions $\begin{bmatrix} u_{[-n,-1]}(t) \\ y_{[-n,-1]}(t) \end{bmatrix}$ and "future" inputs $u_{[0,N_p-1]}(t)$, we want to compute future output $y_{[0,N_p-1]}(t)$.
- If we know input-output trajectories $(u^i_{[-n,N_p-1]},y^i_{[-n,N_p-1]})_{i=1,2}$ such that

$$\begin{cases} u_{[-n,-1]}(t) &= u_{[-n,-1]}^1 + u_{[-n,-1]}^2 \\ y_{[-n,-1]}(t) &= y_{[-n,-1]}^1 + y_{[-n,-1]}^2 \end{cases}; \quad u_{[0,N_p-1]}(t) = u_{[0,N_p-1]}^1 + u_{[0,N_p-1]}^2$$

→ Future output is (similarly as before):

$$y_{[0,N_p-1]}(t) = y_{[0,N_p-1]}^1 + y_{[0,N_p-1]}^2$$

9 / 20

A Non-Parametric Model?

• Say we have a lot of input-output trajectories $(u^i_{[-n,N_p-1]},y^i_{[-n,N_p-1]})_{i=1:K}$, we can store them in data matrices:

$$U = \begin{bmatrix} u_{[-n,N_p-1]}^1 & u_{[-n,N_p-1]}^2 & \dots & u_{[-n,N_p-1]}^K \end{bmatrix}$$
$$Y = \begin{bmatrix} y_{[-n,N_p-1]}^1 & y_{[-n,N_p-1]}^2 & \dots & y_{[-n,N_p-1]}^K \end{bmatrix}$$

 \hookrightarrow For any vector α , if

$$\begin{cases} u_{[-n,N_p-1]}(t) &= U\alpha \\ y_{[-n,N_p-1]}(t) &= Y\alpha \end{cases} \iff \begin{bmatrix} U \\ Y \end{bmatrix} \alpha = \begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,N_p-1]}(t) \end{bmatrix}$$

then $(u_{[-n,N_p-1]}(t),y_{[-n,N_p-1]}(t))$ is a valid trajectory.

A Non-Parametric Model?

• Say we have a lot of input-output trajectories $(u^i_{[-n,N_p-1]},y^i_{[-n,N_p-1]})_{i=1:K}$, we can store them in data matrices:

$$U = \begin{bmatrix} u_{[-n,N_p-1]}^1 & u_{[-n,N_p-1]}^2 & \dots & u_{[-n,N_p-1]}^K \end{bmatrix}$$
$$Y = \begin{bmatrix} y_{[-n,N_p-1]}^1 & y_{[-n,N_p-1]}^2 & \dots & y_{[-n,N_p-1]}^K \end{bmatrix}$$

 \hookrightarrow For any vector α , if

$$\begin{cases} u_{[-n,N_p-1]}(t) &= U\alpha \\ y_{[-n,N_p-1]}(t) &= Y\alpha \end{cases} \iff \begin{bmatrix} U \\ Y \end{bmatrix} \alpha = \begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,N_p-1]}(t) \end{bmatrix}$$

then $(u_{\lceil -n,N_n-1 \rceil}(t),y_{\lceil -n,N_n-1 \rceil}(t))$ is a valid trajectory.

- When is the reverse true? If we have a trajectory, when can we find a corresponding α ?
- → Depends on the "diversity" of data...

10 / 20

The Hankel Matrix

$$z \in \mathbf{R}^{n_z}$$

$$H_{L}(z_{[k,k+N-1]}) = \begin{bmatrix} z_{[k,k+L-1]} & z_{[k+1,k+L]} & \dots & z_{[k+N-L,k+N-1]} \end{bmatrix}$$

$$= \begin{pmatrix} z_{k} & z_{k+1} & \dots & z_{k+N-L} \\ z_{k+1} & z_{k+2} & \dots & z_{k+N-L+1} \\ \vdots & \vdots & \ddots & \vdots \\ z_{k+L-1} & z_{k+L} & \dots & z_{k+N-1} \end{pmatrix} \in \mathcal{M}_{(Ln_{z})\times(N-L+1)}(\mathbb{R})$$

The Hankel Matrix, visually

With
$$L=3$$
 and $N=7$:

$$H_3(z_{[k,k+6]}) = \begin{pmatrix} z_{k+0} & z_{k+1} & z_{k+2} & z_{k+3} & z_{k+4} \\ z_{k+1} & z_{k+2} & z_{k+3} & z_{k+4} & z_{k+5} \\ z_{k+2} & z_{k+3} & z_{k+4} & z_{k+5} & z_{k+6} \end{pmatrix}$$

12 / 20

The Hankel Matrix, visually

With L=3 and N=7:

$$H_3(z_{[k,k+6]}) = \left(egin{array}{ccccc} z_{k+0} & z_{k+1} & z_{k+2} & z_{k+3} & z_{k+4} \ z_{k+1} & z_{k+2} & z_{k+3} & z_{k+4} & z_{k+5} \ z_{k+2} & z_{k+3} & z_{k+4} & z_{k+5} & z_{k+6} \end{array}
ight)$$

12 / 20 Alexandre F.B.

The Hankel Matrix, visually

With
$$L=3$$
 and $N=7$:

$$H_3(z_{[k,k+6]}) = \left(egin{array}{ccccc} z_{k+0} & z_{k+1} & z_{k+2} & z_{k+3} & z_{k+4} \ z_{k+1} & z_{k+2} & z_{k+3} & z_{k+4} & z_{k+5} \ z_{k+2} & z_{k+3} & z_{k+4} & z_{k+5} & z_{k+6} \end{array}
ight)$$

12/20Alexandre F.B. Data-Driven MPC

Willems' Lemma

Theorem

Let S a linear time-invariant, controllable and observable system. Let u^d, y^d a trajectory of S of length N (u^d input, y^d output), such that u^d is Persistently Exciting of order L+n. Then, with again u input, y output:

$$\forall \begin{bmatrix} u \\ y \end{bmatrix} \text{ trajectory of } \mathbb{S}, \quad \exists \alpha \in \mathbb{R}^{N-L+1}, \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha$$

Willems' Lemma

Theorem

Let S a linear time-invariant, controllable and observable system. Let u^d, y^d a trajectory of S of length N (u^d input, y^d output), such that u^d is Persistently Exciting of order L+n. Then, with again u input, y output:

$$\forall \begin{bmatrix} u \\ y \end{bmatrix} \text{ trajectory of } \mathbb{S}, \quad \exists \alpha \in \mathbb{R}^{N-L+1}, \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha$$

Definition (Persistence of Excitation)

 $u_{[k,k+N-1]}$, such that $u_k \in \mathbb{R}^{n_u}$, is Persistently Exciting of order L+n if:

$$rank(H_{L+n}(u_{[k,k+N-1]})) = n_u \times (L+n)$$

Consequence : $N \ge (n_u + 1) \times (L + n) - 1$.

A Non-Parametric Model

• It is now established that: if u^d is such that $\operatorname{rank}(H_{L+n}(u^d))=(L+n)n_u$, and we take $U=H_L(u^d), Y=H_L(y^d)$ then

$$\exists \alpha, \begin{bmatrix} U \\ Y \end{bmatrix} \alpha = \begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,N_p-1]}(t) \end{bmatrix} \Longleftrightarrow \begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,N_p-1]}(t) \end{bmatrix} \text{ is a trajectory.}$$

A Non-Parametric Model

• It is now established that: if u^d is such that $\operatorname{rank}(H_{L+n}(u^d))=(L+n)n_u$, and we take $U=H_L(u^d), Y=H_L(y^d)$ then

$$\exists \alpha, \begin{bmatrix} U \\ Y \end{bmatrix} \alpha = \begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,N_p-1]}(t) \end{bmatrix} \Longleftrightarrow \begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,N_p-1]}(t) \end{bmatrix} \text{ is a trajectory.}$$

• We can "cut" the data matrix in two parts:

$$Y = \begin{bmatrix} Y_p \\ Y_f \end{bmatrix} = \begin{bmatrix} y_{[-n,-1]}^1 & y_{[-n,-1]}^2 & \cdots & y_{[-n,-1]}^K \\ y_{[0,N_p-1]}^1 & y_{[0,N_p-1]}^2 & \cdots & y_{[0,N_p-1]}^K \end{bmatrix}$$

• Then, using linearity (for prediction and MHE):

$$\begin{bmatrix} u_{[-n,N_p-1]}(t) \\ y_{[-n,-1]}(t) \end{bmatrix} = \begin{bmatrix} U \\ Y_p \end{bmatrix} \alpha \implies y_{[0,N_p-1]}(t) = Y_f \alpha$$

14 / 20

Model Predictive Control

Problem (Control)

At each time t, compute $\bar{u}(t)$ that minimizes cost:

$$J(\bar{u}_{[0,N_p-1]}(t),\bar{y}_{[0,N_p-1]}(t))$$

such that

Dynamics:
$$\begin{cases} \bar{x}_{i+1}(t) &= A\bar{x}_i(t) + B\bar{u}_i(t) \\ \bar{y}_i(t) &= C\bar{x}_i(t) + D\bar{u}_i(t) \end{cases}, \quad 0 \leqslant i < N_p$$

Initial state: $\bar{x}_0(t) = x_t$

Then, we apply $u_t = \bar{u}_0(t)$.

15 / 20 Alexandre F.B.

Data-Driven MPC

Data-Driven Model Predictive Control

Problem (Data-driven control)

At each time t, compute $\alpha(t)$ that minimizes cost:

$$J(\bar{u}_{[0,N_p-1]}(t),\bar{y}_{[0,N_p-1]}(t))$$

such that

$$\begin{aligned} \textit{Behavior:} \quad \begin{bmatrix} \bar{u}_{[-n,N_p-1]}(t) \\ \bar{y}_{[-n,N_p-1]}(t) \end{bmatrix} = \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha(t) \\ \textit{Initial conditions:} \begin{bmatrix} \bar{u}_{[-n,-1]}(t) \\ \bar{y}_{[-n,-1]}(t) \end{bmatrix} = \begin{bmatrix} u_{[t-n,t-1]} \\ y_{[t-n,t-1]} \end{bmatrix} \end{aligned}$$

Then, we apply $u_t = \bar{u}_0(t)$.

Recall, $L = N_p + n$.

Data-Driven Model Predictive Control

Problem (Data-driven control)

At each time t, compute $\alpha(t)$ that minimizes cost:

$$J(\bar{u}_{[0,N_p-1]}(t),\bar{y}_{[0,N_p-1]}(t)) + \lambda_{\varepsilon} \|\varepsilon(t)\|_{2}^{2}$$

such that

$$\textit{Behavior: } \begin{bmatrix} \bar{u}_{[-n,N_p-1]}(t) \\ \bar{y}_{[-n,N_p-1]}(t) \end{bmatrix} = \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha(t)$$

Noisy Initial conditions:
$$\begin{bmatrix} \bar{u}_{[-n,-1]}(t) \\ \bar{y}_{[-n,-1]}(t) + \varepsilon(t) \end{bmatrix} = \begin{bmatrix} u_{[t-n,t-1]} \\ y_{[t-n,t-1]} \end{bmatrix}$$

Then, we apply $u_t = \bar{u}_0(t)$.

Recall,
$$L = N_p + n$$
.

16 / 20 Alexandre F.B.

Data-Driven Model Predictive Control

Problem (Data-driven control)

At each time t, compute $\alpha(t)$ that minimizes regularized cost:

$$J(\bar{u}_{[0,N_p-1]}(t),\bar{y}_{[0,N_p-1]}(t)) + \lambda_{\varepsilon} \|\varepsilon(t)\|_2^2 + \lambda_{\alpha} \|\alpha(t)\|_2^2$$

such that

$$\textit{Behavior: } \begin{bmatrix} \bar{u}_{[-n,N_p-1]}(t) \\ \bar{y}_{[-n,N_p-1]}(t) \end{bmatrix} = \begin{bmatrix} H_L(u^d) \\ H_L(y^d) \end{bmatrix} \alpha(t)$$

Noisy Initial conditions:
$$\begin{bmatrix} \bar{u}_{[-n,-1]}(t) \\ \bar{y}_{[-n,-1]}(t) + \varepsilon(t) \end{bmatrix} = \begin{bmatrix} u_{[t-n,t-1]} \\ y_{[t-n,t-1]} \end{bmatrix}$$

Then, we apply $u_t = \bar{u}_0(t)$.

Recall,
$$L = N_p + n$$
.

Alexandre F.B. Data-Driven MPC

Notice That...

- Only $\alpha(t)$ needs to be found! Indeed:
 - $\bar{u}(t), \bar{y}(t)$ are defined from $\alpha(t)$
 - $\varepsilon(t)$ is defined from $\bar{y}(t)$ and $y_{[t-n,t-1]}$

Notice That...

- Only $\alpha(t)$ needs to be found! Indeed:
 - $\bar{u}(t), \bar{y}(t)$ are defined from $\alpha(t)$
 - $\varepsilon(t)$ is defined from $\bar{y}(t)$ and $y_{\lceil t-n,t-1 \rceil}$
- About the number of data samples:
 - Data u^d must be PE of order $L + n = N_p + 2n$

$$\hookrightarrow N \geqslant (n_u + 1) \times (N_p + 2n) - 1$$

- We have to obtain data (u^d, y^d) ! There are mainly two ways:
 - before creating the controller,
 - with a controller in two "phases": data-gathering, then control.

Control Scheme Example

Control of a linear system with n_u inputs and n_y outputs.

- Offline: Define parameters (and cost):
 - Choose n.
 - ullet Choose prediction horizon N_p , in conjunction with T_e the sample time.
 - Choose number of data samples $N \ge (n_u + 1) \times (N_p + 2n) 1$.
 - Choose costs $J, \lambda_{\alpha}, \lambda_{\varepsilon}$.
 - Generate $u^d \in \mathbb{R}^{Nn_u}$ such that $\operatorname{rank}(H_{N_p+2n}(u^d)) = n_u \times (N_p+2n)$: random values often work well.
- Initialization: For every time t in [0, N-1]:
 - Apply random input $u_t \leftarrow u_t^d$
 - Record output $y_t^d \leftarrow y_t$
- Online: As usual with MPC, for every time $t \ge N$:
 - Solve the control problem
 - Apply the result $\bar{u}(t)$ for 1 time step

Exercice: Data-Driven Tracking

Consider the tracking objective:

$$J(\bar{u}(t), \bar{y}(t)) = \sum_{k=0}^{N_p - 1} \|\bar{y}_k(t) - y_k^r(t)\|_Q^2 + \|\bar{u}_k(t) - \bar{u}_{k-1}(t)\|_R^2$$

with constraints

$$u_{\min} \leqslant \bar{u}_k(t) \leqslant u_{\max} \quad \forall k \geqslant 0$$

where $y^r(t)$ is the reference and $\bar{u}_{-1}(t) = u_{t-1}$ is the previous input.

- **①** Write the data-driven control problem in terms of $\alpha(t)$.
- 2 Implement with these values:
 - $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; R = 0.1Q
 - $\lambda_{\alpha} = 0.1; \lambda_{\varepsilon} = 10$

19 / 20 Alexandre F.B. Data-Driven MPC

Choosing Parameters

- Choice of n:
 - Remember, $n \ge n_x$: an estimate of n_x is nice to have.
 - Contrarily to an identified system, a "large" n can be good: it gives more information to the MHE.
- Choice of N_n :
 - As for model-based MPC: a larger value increases control performance, but takes more compute time.
- Choice of N:
 - As said before: $N \ge (n_u + 1) \times (N_n + 2n) 1$.
 - A larger value "filters" uncertainties, but is more expensive computationally.
- Choice of $J, \lambda_{\alpha}, \lambda_{\varepsilon}$:
 - λ_{α} reduces the risk of "overfit": it should increase with noise variance.
 - λ_{ε} reduces "misfit": it should increase with inverse of noise variance.
 - $\lambda_{\alpha}, \lambda_{\varepsilon}$ increase together with "model quality": it needs to be balanced against the control cost J.

Alexandre F.B. Data-Driven MPC