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Preliminaries Notations

Latin Notations

NOTATIONS
WE WILL TRY TO KEEP THEM FROM NOW TO THE END ...

* N, :prediction horizon
c k : current time

« Given a vector z € R"z, we will adopt these 2 notations for
prediction: Z(K|k) and Z(K + 1|k) to denote:

2(k|k) 2(k + 1[k)
21 ) ¢ g, 2k + 1l = [ 2T 20

2(k + N, — 1]k) 20k + Nk

Z(K|k) = € RNz

They can be interpreted as « what | expect over the
prediction horizon, based on what | know at time k ».
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« When there is no confusion: Z(K),Z and Z(K + 1),Z*

N
=

Figure 1: Recall from Romain’s slides Y
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Preliminaries Notations

Notations and algebra for today

® L: trajectory length, t: current time, IN,,: prediction horizon
® Given a vector z € R™=, we will adopt the following notations:

® 2. the value of z at time k
2k

2k+1
® 2k k+e] = : e RFD= the "stacked window"

Zk+£
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Preliminaries Notations

Notations and algebra for today

® L: trajectory length, ¢: current time, N,: prediction horizon
® Given a vector z € R™=, we will adopt the following notations:
® 2. the value of z at time k
2k

2
° 2 I e R+Dn: the "stacked window"
[k, k+£] :

Rk+L
® 2, (t) predicted/calculated value of z;j, from information available at time ¢
> 20,4 (t) “what | expect on the interval [t + 0, + ], based on what | know at
time t”
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Preliminaries Notations

Notations and algebra for today

® L: trajectory length, t: current time, N,: prediction horizon
® Given a vector z € R™=, we will adopt the following notations:

® 2. the value of z at time k
2k

2
° 2 I e R+Dn: the "stacked window"
[k, k+£] :

Rk+¢
® 2(t) predicted/calculated value of z;j, from information available at time ¢
> 20,4 (t) “what | expect on the interval [t + 0, + ], based on what | know at
time ¢t
* Given a matrix M, we have its Moore-Penrose inverse M

* If Mz = b has solution(s) for x, then MTb is a solution

* Given a matrix M > 0 and a vector 2: [2]3, := 2T M2

Gy

3/20 Alexandre F.B. Data-Driven MPC



Preliminaries Prediction

Model-Based State Prediction

PREDICTION MODEL
THE LINEAR CASE

+ Let us consider the linear discrete-time system

x(k + 1) = Ax(k) + Bu(k), x € R™,u € R™
« Let us suppose that we have a measure of the current state x (k)
+ Show that X(K + 1|k) can be expressed as:

X(K + 1|k) = Fx(k|k) + HU(K|k)

2A-SG8-MPC 2 - RB 2022
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Figure 2: Recall from Romain’s slides Y
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Preliminaries Prediction

Brick 1: Model-Based Output Prediction

® Linear discrete-time system:

; reR™ yweR™ yeR™

Trr1 = Axp + Buyg
Yk = Cxz + Duy

* Suppose xj (and u) is known:

Ylkk+L—1] = Or T+ Hr, Ul o+ L—1]
Yk C D 0 ... 0 Uk
Yk+1 CA CB D 0 Uk+1
: - : f,Ck‘i‘ : : . : :
Yk+L—1 CAL-1 CAY 2B CA' 3B ... D Uk+L—1
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Preliminaries Prediction

About Linearity

® We know 2 "trajectories":
1,1 1
® o, Uo, 1) Y[o,L-1]
o 2 .2 2
20> Ulo,L—11" Y[0,L-1]
* We want to compute the output sequence yf’O’L_l], corresponding to
* state 3 =z} + 22
® input sequence “?O,Lq] = UEO,LA] + u%O’Lfl]
but we don't know Op, nor Hy...
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Preliminaries Prediction

About Linearity

® We know 2 "trajectories":
1 1 1
® Zp: U, 11 Y[0,L-1]
o 2 .2 2
20> Ulo,L—11" Y[0,L-1]
* We want to compute the output sequence yf’O’Lil], corresponding to
* state 3 =z} + 22
® input sequence “?O,Lq] = “EO,LA] + u%O’Lfl]
but we don't know Op, nor Hy...

® Thanks to linearity, we have:

3 3 3
Yio,r—11 = Oy + Heujy g

= Op(xp + =) + %L(UEO,LA] + U%O,Lq])
= (Opwg + Hpujy 1)) + (Opag + Hpufy 1)

= ?/[lo,L—l] + y[20,L—1] c.
@
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Data-Based System Representation Eliminating the Parametric Model

Brick 2: An alternative to the State Observer

® Suppose now that 8 is observable, which by definition means:

C
CA

Vn = ng, rank(0,) = rank ) = ny,
CAn—l

= OnZo = Y[o,n—-1] — HnU[o,n—1] is @ system of linear equations, with a unique
solution ! zg

@
[ )
! Assuming Y[o,n—1] iS @ possible output of the system )
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Data-Based System Representation Eliminating the Parametric Model

Brick 2: An alternative to the State Observer

® Suppose now that 8 is observable, which by definition means:

C
CA

Vn = ng, rank(0,) = rank ) = ny,
CA.n—l
— Onxo = yYjo,n—1] — Hnu[o,n—1] is a system of linear equations, with a unique
solution 1 Trog = O;‘-‘L (y[O,n—I] — g’CnU[07n_1])

< This is a "static" alternative to dynamic state observers: it is called MHE
(Moving Horizon Estimator).

< It is linear tool!

‘.1
[ )
! Assuming Y[o,n—1] iS @ possible output of the system
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Data-Based System Representation Eliminating the Parametric Model

Model-Based Input-Output Representation

* Up until now, we have (with L > n = n,):
* Output prediction: yjo,r 1] = Orzo + Hpupo, -1
® State estimation: xg = OIL (y[o,n_l] - f}CnU[o,n—u)
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Data-Based System Representation Eliminating the Parametric Model

Model-Based Input-Output Representation

* Up until now, we have (with L > n = n,):
* Output prediction: yjo,r 1] = Orzo + Hpupo, -1
® State estimation: xg = OIL (y[o,n_l] - f}CnU[o,n—u)

® let's plug all this together:

yo.0-1] = OL0% (Yo.n—1] — Haton-11) + Hrup, 1)

* For convenience we can write (same n; N, = L —n > 1):

YmnNy—11 (1) = Oy 1nOf, (—n,—1)(£) = Hntu—p —1) (1)) + H v N, —1) (t)

8/20 Alexandre F.B. Data-Driven MPC

Gy



Data-Based System Representation Eliminating the Parametric Model

Model-Based Input-Output Representation

* Up until now, we have (with L > n = n,):
® Output prediction: yjo,r—1] = Orzo + Hrujo, -1
* State estimation: zo = O (y[o,n,l] - f}fnu[o,nq])

® let's plug all this together:

yo.0-1] = OL0% (Yo.n—1] — Haton-11) + Hrup, 1)

* For convenience we can write (same n; N, = L —n > 1):

YimnNy—1] () = ONyn O (Y1—n,—1)(t) — Hntt_pp 17 (1)) + Hpv_p v, —11(t)

* For convenience (again) we rewrite:

Yjo,n,—1)(t) = Afup_p _17(t) + ALy —11(t) + Brugo n,—11(t)

Ul_yy t)
=A [—n, 1]( ]+'B i
- [y[n,l] (t) Luo,n,—1)(t) 1 i
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Data-Based System Representation Eliminating the Parametric Model

Back onto Linearity

® From before:

U[—n,—1] (t)
Y[—n,—1] (t>
want to compute future output y n,—1](%).

® Given initial conditions [ ] and "future” inputs upg n,_1j(t), we
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Data-Based System Representation Eliminating the Parametric Model

Back onto Linearity

® From before:

U, —1)(t)
Y[—n,—1] (t>
want to compute future output y n,—1](%).

® Given initial conditions [ ] and "future” inputs upg n,_1j(t), we

e |f we know input-output trajectories (ult—n,Np—l]’yf—n,Np—l])i:LQ such that

Un—1)(t) = “%—n 1) T U 1 2
’ ’ i upo,N,—11(t) = ujo v, —11 U0 N, —
{y[—n,—l] ) =Y p 1) T Yn 1] 0N (0t 0

< Future output is (similarly as before):

Ypo,n,—1](t) = y[lo,Np—l] + y[QO,Np—l] C’/.)

9/20 Alexandre F.B. Data-Driven MPC



Data-Based System Representation Building the Non-Parametric Model

A Non-Parametric Model?

® Say we have a lot of input-output trajectories (“ff—n,prl]vyffn,prl])i=1:K-
we can store them in data matrices:

1 2 K
U= [“[fn,prl] Ul Np-1] “[fn,prl]]
Y = [y%_naNp_l] y[2_naNp_1] e y[lianP_l]]

— For any vector q, if
U_nn,-1)(t) =Ua - [U] o= |:u[—n,Np—1] (t)]
Y[—n,N,—1] (t) =Y« Y Y[—n,Np,—1] (t)
then (u[_, n,—1](t), Y[—n,N,—1](t)) is a valid trajectory.
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Data-Based System Representation Building the Non-Parametric Model

A Non-Parametric Model?

10/20

Say we have a lot of input-output trajectories (“ff—n,prl]vyffn,prl])i=1:K-
we can store them in data matrices:

1 2 K
U= [“[fn,prl] Ul Np-1] “[fn,prl]]
Y = [y%_naNp_l] y[2_naNp_1] e y[lianP_l]]

For any vector «, if

U_nn,-1)(t) =Ua - [U] o= |:u[—n,Np—1] (t)]
Y[—n,N,—1] (t) =Y« Y Y[—n,Np,—1] (t)
then (u[_, n,—1](t), Y[—n,N,—1](t)) is a valid trajectory.

When is the reverse true? If we have a trajectory, when can we find a
corresponding «?

Depends on the "diversity" of data...
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Data-Based System Representation Building the Non-Parametric Model

One More Notation...

The Hankel Matrix

ze R™
Hi (2o N—1]) = [2hhrL-1] Z[k+1h4L] - 2kt N—Lk+N-1]]
2k Rk+1 -+  RE+N-L
z z e Z _
= k:ﬂ k:+2 . k+N: o € M(Ln.)x(N—1+1)(R)
Rk+L—-1 ZRk+L - -- Rk+N-1
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Data-Based System Representation Building the Non-Parametric Model

One More Notation...

The Hankel Matrix, visually
With L =3 and N =T7:
Zk+0  Rk+1  Rk+2 Rk+3  Rk+4

H3(2(kk+6]) = | 2b41 Zht2 2k43  Zhed  Zhts

Zk4+2  2k4+3 2Fk+4  Rk+5  Rk+6

f f f f f f —t
E+0 k+1 k+2 k+3 k+4 k+5 k+6
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Data-Based System Representation Building the Non-Parametric Model

One More Notation...

The Hankel Matrix, visually
With L=3and N =T:
Zk+0  Rk+1 Rk+2  Rk+3  Rk+4

H3(2pepre) = | 2000 Zii2 Zkes Zhaa Zhas

Zk42  Zk4+3  Fk+4  Rk+5  Rk+6

f f f f f f — 1
k+0 k+1 k+2 k+3 k+4 k+5 k+6
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Data-Based System Representation Building the Non-Parametric Model

One More Notation...

The Hankel Matrix, visually
With L =3 and N = T:
Zk+0  Fk+1 Rk+2  Rk+3  Rk+4

113(Zﬁgk+6]):: Zh+l Fk+2  Zk+3 Rk+4 Rk+5

Zk42  Zk4+3  Fk+4 Rk+5 Rk+6

f f f f f f — 1
k+0 k+1 k+2 k+3 k+4 k+5 k+6
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Data-Based System Representation Building the Non-Parametric Model

Willems' Lemma

Theorem

Let 8 a linear time-invariant, controllable and observable system. Let u¢,y? a
trajectory of 8 of length N (u? input, y® output), such that
u? is Persistently Exciting of order L + n. Then, with again u input, y output:

U . N—L+1 |U HL(Ud)]
\ trajectory of §, daeR , = «
{y] e [y] [HL(yd)
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Data-Based System Representation Building the Non-Parametric Model

Willems' Lemma

13/20

Theorem

Let 8 a linear time-invariant, controllable and observable system. Let u¢,y? a
trajectory of 8 of length N (u? input, y® output), such that
u? is Persistently Exciting of order L + n. Then, with again u input, y output:

U . N—L+1 |U HL(Ud)]
\ trajectory of §, daeR , = «
{y] e [y] [HL(yd)

Definition (Persistence of Excitation)

Ulk,k+N—1], such that uy € R"™ is Persistently Exciting of order L + n if:

rank(Hp 4n(Ufg g+ N-1])) = N X (L + 1)

Consequence : N > (n, + 1) x (L+n) — 1.

Alexandre F.B. Data-Driven MPC
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Data-Based System Representation Building the Non-Parametric Model

A Non-Parametric Model

* It is now established that: if u? is such that rank(Hy,,(u)) = (L + n)n,,
and we take U = Hy(u),Y = Hp(y?) then

Ja, [U] a= [u[_”’Nf'_l] (t)] — [u[_”’Np_l] (t)] is a trajectory.
Y Y[—n,N,—1](t) Y[—n,N,—1](t)

Gy
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Data-Based System Representation Building the Non-Parametric Model

A Non-Parametric Model

* It is now established that: if u? is such that rank(Hz ., (u)) = (L + n)n,
and we take U = Hy(u),Y = Hp(y?) then

Ja, [U] a= {u[”’Nf'l] (t)] — {u[”’Npl] (t)] is a trajectory.
Y Y[—n,N,—1](t) Y[—n,N,—1](t)

® We can "cut" the data matrix in two parts:

Y, Ymt] Yim—1] o Y-
e 1 e B S S B e
f Yo,n,—11 Yo,N,—11 - Y[o,N,—1]

® Then, using linearity (for prediction and MHE):

[u[—n,Np—l] (t)

U
Y[—n,—1] (t) ] - [}/p:| Q= y[O,prl](t) = onz

Gy

14 /20 Alexandre F.B. Data-Driven MPC



Data-Driven Predictive Control

Model Predictive Control

Problem (Control)

At each time t, compute u(t) that minimizes cost:
J (g0, n,~11(t)s Yo,n5,—11 (1))
such that

Dynamics: {j”l(t) = Az,(t) + Bu;(t)
() = C(t) + Dus(t)

Initial state: To(t) = xy

Then, we apply uy = ug(t).
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Data-Driven Predictive Control Data-Driven MPC

Data-Driven Model Predictive Control

16 /20

Problem (Data-driven control)

At each time t, compute «(t) that minimizes cost:

J(up,n,-11(t), Yjo,n,-11 (1))

such that

I~

Behavior: [ [_”’N”_l]] (t)] = [HL(ud)] a(t)

—n,N,—1](t) Hi(y?)

[-n,—1] (t)} _ [U[t—n,t—l]]
[—n,—1](t) Y[t—n,t—1]

<

I

Initial conditions: [

N

Then, we apply uy = ug(t).

Recall, L = N, + n.

Alexandre F.B. Data-Driven MPC
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Data-Driven Predictive Control Data-Driven MPC

Data-Driven Model Predictive Control

Problem (Data-driven control)

At each time t, compute «(t) that minimizes cost:

J (o, n,—11(), Fjo.n,—1] () + Aclle(@®)]3

such that
o N— ()| _ [He(
Behavior: [ )} [HL(yd) a(t)
Noisy Initial conditions: [ Un,—y(t ] = [u[t_”’t_l]]

Then, we apply uy = ug(t).

Recall, L = N, + n. A
L,’
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Data-Driven Predictive Control Data-Driven MPC

Data-Driven Model Predictive Control

Problem (Data-driven control)

At each time t, compute «(t) that minimizes regularized cost:

J (o, n,-11(8), Fjo,v,~11 () + Aelle(®)3 + Aafla(t)[3

such that
= d
Behavior: [u[_"’N"_I] tﬂ = [HLEu )] a(t)
. .. e U[—p,—1] (t _ | Ut—nt-1]
Noisy Initial conditions: [g[—n,—l] (t)+5(t)] [y[t—n,t—l]

Then, we apply uy = ug(t).

Recall, L = N, + n. A
L,’
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Data-Driven Predictive Control Data-Driven MPC

Notice That...

. OnIy a(t) needs to be found! Indeed:

u(t), y(t) are defined from «(t)
g(t) is defined from g(t) and yp—pn ¢—1

Gy
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Data-Driven Predictive Control Data-Driven MPC

Notice That...

® Only a(t) needs to be found! Indeed:
® u(t),y(t) are defined from «(t)
® £(t) is defined from () and ypy—p -1
® About the number of data samples:
* Data u? must be PE of order L + n = N, + 2n
— N=(n,+1)x(Ny+2n)—1
* We have to obtain data (u?,y%)! There are mainly two ways:

® before creating the controller,
® with a controller in two "phases": data-gathering, then control.

Gy
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Data-Driven Predictive Control In Practice

Control Scheme Example

Control of a linear system with n,, inputs and n, outputs.

* Offline: Define parameters (and cost):

® Choose n.

Choose prediction horizon IV, in conjunction with T, the sample time.
Choose number of data samples N > (n,, + 1) x (N, + 2n) — 1.
Choose costs J, Ay, Ac.
Generate u € RV such that rank( Hy, 2, (u?)) = ny x (N, + 2n):
random values often work well.

* Initialization: For every time ¢ in [0, N — 1]:
* Apply random input u; < uf
* Record output y¢ « y;
® Online: As usual with MPC, for every time t > N:

® Solve the control problem
® Apply the result u(t) for 1 time step

Gy
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Exercice

Exercice: Data-Driven Tracking

Consider the tracking objective:

J@0).56) = S [500) — O + [7() — T ()]
k=0

with constraints
Umin < Ug(t) < Umax Yk =0
where y"(t) is the reference and u_1(t) = u;—1 is the previous input.

@ Write the data-driven control problem in terms of «/(t).

® Implement with these values:

10
. Q_[O 1];R—O.1Q

* A\ =01\ =10

Gy
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Exercice

Choosing Parameters

20 /20

® Choice of n:
® Remember, n = n,: an estimate of n, is nice to have.
® Contrarily to an identified system, a “large” n can be good: it gives more
information to the MHE.
[ ]

Choice of Np:

® As for model-based MPC: a larger value increases control performance, but

takes more compute time.

Choice of N:

® As said before: N > (n, + 1) x (N, +2n) — 1.

® A larger value “filters” uncertainties, but is more expensive computationally.
Choice of J, Aq, Ac:

® )\, reduces the risk of "overfit": it should increase with noise variance.

® ). reduces "misfit": it should increase with inverse of noise variance.

® )., A increase together with "model quality": it needs to be balanced against

the control cost J. A
¢y
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